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Abstract

With the introduction of bivelocity in 2004, new models for the prediction of

Maxwellian, compressible micro-channel flows have recently been developed. This the-

sis utilizes a non-kinetic method to explore an analytic prediction of two-dimensional

velocity profiles of steady and transient, unbounded, compressible vortex flows. This

bivelocity hydrodynamic model is compared to the traditional analytical solutions

of the Navier-Stokes Fourier (NSF), Boltzmann, and Burnett equations, as well

as to Mandella’s 1987 experiments in compressible vorticies, highlighting the stark

contrasts between these models. While definitive convergence has yet to be obtained,

the bivelocity approach has shown promise in resolving these issues. The importance

of these bivelocity addition provides a clean explanation for the poor analytic corre-

lations to experimental data previously attempted. While further investigation is

required, bivelocity definitively improves upon the current models.
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Nomenclature

The terms used in this text are defined below:

Latin:
C = Compressibility Constant
ê = Energy (of the System)
er = Radial Rate of Deformation
eθ = Angular Rate of Deformation
ir = Radial Unit vector
iθ = Angular Unit Vector
I = Identity Matrix
Je = Energy Flux
Ju = Diffusive Internal Energy Flux
Jυ = Diffuse Volume Flux
k = Thermal Conductivity Coefficient
k′ = Thermal Conductivity Specific Ratio
Kn = Knudson Number
Ma = Mach Number
Mo = Net Moment Constant
p = Equilibrium Pressure
P = Pressure Tensor
Pr = Prandtl Number
r = Radius
R = Ideal Gas Constant
Re = Reynolds Number
T = Viscous Stress Tensor
T = Temperature
tr() = Trace of a Tensor
ur = r-Component of Velocity
uθ = θ-Component of Velocity
U = Internal Energy
V = Representative velocity
V = Magnitude of Mass Velocity
vm = Mass Velocity
vυ = Volume Velocity

Greek:
α = Thermal Diffusivity
γ = Heat Capacity Ratio (cp / cv)
Γ∞ = Circulation (strength of vortex)
∇ = Del Operator
ζ = Non-dimensional quantity
η = Refractive Index
θ = Angle
µ = Dynamic Viscosity
ν = Momentum Diffusivity or Kinematic

Viscosity
πv = Volume Production Rate
ρ = Density
ψ = Generic Variable

Other Notation:
Superscript T = Transpose
Subscript o = Reference parameter
Tilde˜= Nondimensionalized parameter
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1 INTRODUCTION

1 Introduction

Vortex flows represent an important branch of fluid dynamics. Vortices can be

observed from spinning electron charges to revolving galaxy clusters, covering 38

orders of magnitude [2]. More well known are the vortices found in sinks and

bathtubs, or hurricanes and tornadoes. The two major areas where the traditional

approach begins to fail for compressible flows are at high Mach numbers and high

Knudsen numbers. A particularly important instance of compressible vortices are

found in both fixed wing and rotary aircraft. Specifically, rotary aircraft blade

tip velocities reach into the transonic range [3]. Once the flow has been identi-

fied as compressible, describing it mathematically can become challenging. This

paper attempts to help fill the gaps in our collective understanding of fluid mechanics.

Research in compressible vortex flows has stagnated in recent years. Previously, ana-

lytical studies like those done by Colonius, Lele and Moin utilized the Navier-Stokes

equations to model two-dimensional axisymmetric vortices [4]. While certain calcula-

tions are in agreement with numerical solutions, much of the prediction correlates

poorly with the experiments done by Mandella, Moon and Bershader [4, 5]. Mandella

explored the interactions of a single, quasi-uniform, two-dimensional compressible

vortex with an airfoil by a traveling shock. Below in Figure 1, distinct density

contours can be seen in great detail.

In effect, this thesis - as well as the previous work discussed herein - endeavors

to improve upon the Navier-Stokes-Fourier model by adding the bivelocity assump-

tion to derive a set of mathematical expressions which can be used to accurately

predict these compressible vortices, which are so predominant in our universe. Fortu-

nately, thanks to the dedicated work of others before, there exists an understanding

of what the structure should look like. Mandella’s holographic interoferograms

produced a number of excellent photos showing the density distribution, and has

proven to be instrumental in the hunt to find a generic compressible vortex solution.
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1 INTRODUCTION

Figure 1: (Mandella Figure 1.3): Vortex Structure Interferogram [2]

This interoferogram marks variation in density, just as a topographical map indicates

variation in elevation. Here, the darkened lines represent changes in density of

approximately 1/20th of sea-level atmospheric density between contours [2]. Addi-

tionally, while directionality is not implied by the interferogram, it is known that

the density is decreasing towards the center of the vortex where the fluid becomes

increasingly rarefied and further susceptible to decompression.

In general, we can simplify the interferogram by splitting it into three distinct

parts. Long-understood vortex structure has determined that the major regions

include the core, viscous layer, and inviscid periferi - as seen below in Figure 2. This

specific vortex structure is known as a Rankine vortex [2].
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1 INTRODUCTION

Figure 2: Diagram of Vortex zones

Rather than model a free vortex - to avoid singularity issues - the solid core at the

center of the matrix drives the flow. Immediately adjacent to the rotating core, a

viscous layer develops. This corresponds to the darkened concentric rings in the

interoferogram above in Figure 1. In order to have a rotational vortex flow, velocity

must increase as radius increases. Farther away from the core, the viscous layer

breaks down, and the flow becomes irrotational, where tangential velocity begins to

decrease with increasing radius. The velocity profile can be seen below in Figure 3.

Figure 3: Rotational-Irrotational Velocity Field

As discussed previously, the tangential velocity increases from the core, to a maximum
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1.1 Mach Number 1 INTRODUCTION

at the edge of the viscous layer, where it begins to drop to zero.

1.1 Mach Number

It is generally accepted that a Mach number of at least 0.3 is required before effects

of compressibility must be considered [6]. The Mach number, defined as

Ma =
υf
υs
, (1)

where υf is the speed of the flow and υs is the localized speed of sound in that

medium. The Mach number is affected by the medium of the flow. Still, the Mach

number is not necessarily constant throughout a single medium. The effects of

temperature and density can vary the Mach number greatly.

It’s important to note that in high-speed flows, the conservation of mass flow

rate becomes counter intuitive. Under subsonic flows, a narrowing of the flow channel

causes an increase in velocity - to compensate for the reduced cross-sectional area.

However, once the flow transitions to supersonic speeds, a narrowing of the flow

channel will result in a decrease velocity.

1.2 The Knudsen Number

Application of the bivelocity equations (which have yet to be defined in this paper)

is independent of whether the flow falls under continuum or statistical mechanics.

However, in statistical mechanical approaches where the Boltzmann equation is

used to describe particle interaction, it’s important to define the difference between

between the continuum and non-continuum flows. A typical indicator is the Knudsen

number Kn where the Knudsen number is defined as

Kn =
λ

L
, (2)

where λ is the mean free path and L is the representative length scale. The mean

free path is defined as the average distance a particle travels in between collisions. A
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1.3 The Navier-Stokes Equations 1 INTRODUCTION

representative length scale for a micro-poiseuille flow would be the tube diameter.

Free vortex flows have no geometric length scale, and it would be difficult to define a

characteristic length scale. In this paper, the Knudsen number represents a reference

Knudsen number where the flow is in local thermal equilibrium. When Kn << 1

the flow behaves according to continuum mechanics, and when Kn >> 1 the flow

can be analyzed according to statistical mechanics.

As the representative length scale approaches the mean free path, the collisions

between particles decrease to the point where thermal energy and momentum are

not effectively exchanged. Once this happens, the flow can no longer be treated as

continuous, and must be observed as discrete particles. Similar to turbulent and

laminar flows, there does not exist a specific transition from continuum to statistical

mechanics. However, the generally accepted transition at Kn = 0.01 [7] is used in

this paper.

1.3 The Navier-Stokes Equations

The Navier-Stokes equations are used to describe a wide variety of fluids behavior,

and are an application of Newton’s second law to fluid mechanics. The Navier-

Stokes equations are well adapted to incompressible flows [1, 8] and flows with a

known analytical relationship between ρ and p [8]. It remains, however, that a full

compliment of equations which include denisty, pressure, as well as temperature

exists. Additionally, Navier-Stokes assumes the flow is a continuum (Kn << 1) and

requires different method for non-continuum flows (discussed below).

1.4 Boltzmann Equation

The Boltzmann Transport Equation (BTE) can be applied to flows identified as

non-continuum, where Navier-Stokes no longer apples (Kn >> 1). The BTE does

not consider the position (p̂) and momentum (M̂) of every particle in the flow, but

rather uses the probability that a certain number of particles will have particular

properties at a given moment. This is accomplished by defining a phase space, which
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1.5 Burnett Equation 1 INTRODUCTION

is a domain of possible positions and momenta. If all three spatial dimensions are

considered, the resulting position/momentum points will be 6-dimensional [9]. The

resulting particle density function f(p̂, M̂ , t) is defined as

dN = f(p̂, M̂ , t) d3p̂ d3M̂ (3)

Integrating over the position and momentum spaces gives

N =

∫
positions

d3p̂

∫
momenta

d3M̂f(p̂, M̂ , t)

=

∫ ∫ ∫
positions

∫ ∫ ∫
momenta

f(p̂x, p̂y, p̂z, M̂x, M̂y, M̂z, t)dp̂xdp̂ydp̂zdM̂xdM̂ydM̂z

(4)

It is important to note that this method assumes a set of uniform particles i.e. a

uniform composition medium. There still exists an issue with BTE solutions and

their uniqueness which are not fully understood. Additionally, there are issues with

fitting the BTE to experimental data [10]

1.5 Burnett Equation

The Navier-Stokes Equations were derived from the first order Knudsen number,

and the Burnett Equation was derived from the second order Knudsen number using

the Chapman-Enskog expansion of the Boltzmann equation in 1935 [11]. By 1991

linearized third-order terms were added to the Burnett equation to help compensate

for its inherent instability, however, this was not entirely successful. The linear

stability analysis was not adequate in justifying the instability in flows with high

Knudsen numbers, and it was realized that the Burnett equations could violate

the second law of thermodynamics at high Knudsen numbers [12]. The nonlinear

collision integral was redefined with the Bhatnagar-Gross-Krook (BGK) operator.

Despite the difficulties with the Burnett equations, they have remained a major

focus. The scientific community continues to develop Burnett Regime derivations
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2 COMPRESSIBLE FREE VORTEX

of the Boltzmann equation in hopes of creating a simplified and more accurate set

of equations [12, 13]. In general, the Burnett Regime - also called the Transition

Regime - refers to flows with Knudsen numbers in the range of 0.01 < Kn < 10.

2 Compressible Free Vortex

2.1 Structure

The structure of a compressible free vortex model contains multiple important regions,

touched on in the previous section. Figure 4 below overlays the velocity profile over

the two vortex structures.

Figure 4: Rotational-Irrotational Velocity Field [14]

A compressible vortex will develop a viscous layer towards the core. This layer

displays different behavior than its free vortex counterpart; most notably, the viscous

layer will in fact be rotational. Vorticity is used to determine whether a flow is

rotational or irrotational, and is defined as

ω ≡ ∇× ~u (5)
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2.2 The Dissipation of Eddies 2 COMPRESSIBLE FREE VORTEX

where ω is the vorticity and ~u is the flow field. For the vortex to be rotational - as

the core of the compressible vortex is - the velocity must increase proportionally with

increasing radius. This allows the relative position of two points at different radii to

remain constant. Once the viscous layer is breached, the vortex begins to behave as

a free vortex where velocity decreases with increasing radius. This rather unique

and elusive velocity profile has become one of the major performance benchmarks

when determining the effectiveness of the bivelocity equations.

2.2 The Dissipation of Eddies

One of the first to tackle the problem of viscous vortex flows was Sir Geoffrey Ingram

Taylor. In 1918 Taylor published on the effects of dissipating eddies in response to

the effects of drag on airships [15]. Taylor noted that the effects on these airships

from eddies appeared to die away above a distance of seven feet, but it was not well

understood what caused this effect. However, Taylor proposed a number of causes

such as the viscous effects of adjacent rotating vortices, as well as the inward radial

flow, which in the two dimensional plane builds mass towards the center, which is

then translated into the third dimension, effectively growing the core of the vortex

until the vortex’s death. Taylor described the two-dimensional angular velocity as

ω =
B e

−r2
4 ν t

t2
√

4 ν
(6)

Taylor discovered this solution which has become the backbone of viscous vortex

flow. He went on to model vortices where angular velocity is at a maximum in the

center and decreases outward. He discovered a nonlinear decrease in radial velocity,

but found that in the viscous layer region, the tangential velocity increased before

decreasing in the free vortex region.

Taylor recognized the importance of the vortex time dependency, and related an

equation for the time taken for a vortex of initial radius a to die down to 1/nth of

its original velocity, which could be expressed as
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2.3 Mandella’s Experimental Analysis 2 COMPRESSIBLE FREE VORTEX

t− t0 = t0(n2/3 − 1) =
a2

2 ν
(n2/3 − 1) (7)

This result was highly significant, considering he was able to verify this approximation

with a series of experiments performed previously and independently [15]. But an

interesting phenomenon occurred. Taylor observed experimentally that the vortex

had a degradation period of one-half of what was expected. Vortices behind grating

of quarter-inch diameter vertical rods died down to half at a distance of 4 feet. Given

the velocity in the channel was 40 feet per second, the expected degradation time

was 1/5th of a second. In actuality, the vortices degraded in 1/10th of a second.

Because of the similar order of magnitude, Taylor concluded that while the viscosity

was not the only driving factor, its contribution was incredibly significant to the

overall degradation. Taylor’s suggestion was to repeat the experiment with different

channel velocities and grating sizes and spacing. Once performed, a curve fit could

be created to solve for the complete dissipation of vortices.

2.3 Mandella’s Experimental Analysis

Michael Mandella’s work is in large part the motivation for this paper. In his 1987

experiments, Michael Mandella utilized holographic interferograms to analyze quasi-

uniform vortex stream flow [2]. Mandella was able to derive a general mathematical

expression to predict density, which was combined with pressure to solve for the

radial momentum equation which yielded fluid velocities. However, he was unable to

derive a predictive expression from first principals.

In order to gather vortex data, Mandella utilized holographic interferograms. The

shock tube setup contains a vortex generator at one end, and an open-ended tube

at the other. The generator created a pseudo-two dimensional compressible vortex,

which traveled along the shock tube where it passed in front of measuring windows [2].

Measurements are made using an electronically timed double-pulsed laser, and when

assessed, density can be extracted. In order to stem errors, pressure measurements
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2.4 Analytic Solutions 2 COMPRESSIBLE FREE VORTEX

were taken separately with a pressure transducer.

As Mandella’s experiments were transient, his density profiles reflected both vortex

location and age. Once the measurements had been taken, Mandella performed curve

fitting on pressure and density to generalize these relationships, and derive equations

of motion. The resulting curve resembled a Cauchy distribution, expressed as [2]

ρ(r, t) = ρ∞(t)− ∆ρ(t)

1 +

(
r

∆r(t)

)2 (8)

where ρ, P , and r represent density, pressure and radius respectively, the subscript

∞ refers to the far-field reference parameter, and ∆ρ and ∆r refer to the well depth,

and half-width at half-maximum respectively. To correlate the experimental pressure

readings to a curve fit, Mandella again utilized a modified Cauchy distribution

expressed as

P (r, t) = P∞(t)− ∆P

1 +

(
r

∆rp

)2 (9)

In this case the pressure and density curve fits pertain specifically to the vortices

generated by Mandella’s setup. While Mandella’s Cauchy curves fit the data quite

well, they are not derived from continuity or conservation equations. The purpose

of this thesis is to develop a set of expressions to numerically solve for any general

nondimensionalized vortex given certain criteria such as Mach and Knudsen number.

2.4 Analytic Solutions

2.4.1 Colonius, Lele, and Moin

Following Mandella’s experiments, Colonius, Lele, and Moin’s expanded on his work

in 1991, which again attempted to take into account the compressible effects of the

high Mach, low Knudsen number vortex flows. Colonius et al were unable to develop

an equation set which accurately matched Mandella’s findings. The prevailing theory
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2.4 Analytic Solutions 2 COMPRESSIBLE FREE VORTEX

was the experimental-analytic transition from two dimensions to three dimensions

was the cause of the discrepancy [4].

To model the two-dimensional axisymmetric flow, Colonius et al utilized conti-

nuity, conservation of momentum and energy, and the perfect gas equation. Their

predictors are similar to this paper, but lacking the bivelocity terms. Colonius et

al solved for the full compressible equations utilizing a grid of 151 mesh points

extending ten times the core radii in each direction. Spatial derivatives are computed

with a sixth-order modified Padé scheme, and the derivatives are advanced with a

fourth-order Runge-Kutta scheme [4].

Ultimately, the derived solution did not match Mandella’s experiments as was

expected. While this error was attributed to the discrepancy between the two-

dimensional model and three-dimensional experiments, a grave error went unnoticed

by Colonius and his team. To simplify the equation determining the ambient speed

of sound - which changes as fluid density changes - both viscosity and thermal

conductivity were held constant [4, p. 48], however, This assumption cannot be made

with a non-isothermal compressible fluid. The proportionality between viscosity and

temperature has long been accepted [16], and is expected to play a role in Colonius

et al’s results. Additionally, Colonius et al performed their analytics by taking the

ambient speed of sound into consideration, since the local Mach number is dependent

the speed of sound, and speed of sound is dependent on the velocities. As will be

discussed in the bivelocity section, this paper uses a representative Knudsen number

to account for these effects.

Finally, the discrepancies between Mandella’s experiments and Colonius et al’s

analytics were greater than they had hoped. Certain aspects, like much of pressure

and low radial values of tangential velocity seem to correlate well. However, with

radial velocity containing large discrepancies, the equation set cannot be said to

accurately predict the vortex flow. The major contributors to this deviation are the
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2.4 Analytic Solutions 2 COMPRESSIBLE FREE VORTEX

constant viscosity assumption and the lack of bivelocity.

2.4.2 Ellenrieder and Cantwell

Ellenrieder and Cantwell took a similar approach to Colonius, Lele, and Moin. As-

suming a constant viscous fluid, Ellenrieder and Cantwell analyzed the transient

compressible solution [17]. To model the two dimensional free vortex, Ellenrieder

and Cantwell used slightly modified versions of Colonius, Lele, and Moin’s equations;

Ellenrieder and Cantwell lump the time and Reynolds dependency into a single

variable τ .

Ultimately, Ellenrieder and Cantwell’s solutions were close to Mandella’s exper-

iments, but did not match them exactly - similar to Colonius, Lele, and Moin’s.

Without providing a direct comparison to Mandella’s data, Ellenrieder and Cantwell

proved that the amount of local compression strongly influences the local magnitude

of the radial velocity. Ellenrieder and Cantwell discuss the use of non-constant-

viscosity, and speak to its importance, but end by incorporating it into the Reynolds

and Prandtl numbers [17].

2.4.3 Aboelkassem, Vatistas and Esmail

Most recently, Yasser Aboelkassem, Georgios Vatistas, and Nabil Esmail published in

2005 on analytical solutions for a time-decaying Rankine vortex [14]. Aboelkassem et

al consider a pure swirling, incompressible, and axisymmetric vortex whose behavior

is modeled according to continuity, angular and radial momentum, and vorticity.

While promising, Aboelkassem et al’s results are somewhat restrictive. These

solutions work only for zero-meridional flow (flow whose radial velocity is zero),

which is not the case.

Having reviewed the analytic attempts to describe generic compressible vortex

flows, this paper joins those before it in attempting to solve this elusive sect of fluid
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2.5 Rotor Driven Flow 2 COMPRESSIBLE FREE VORTEX

mechanics. What sets this paper apart from those before it is the introduction of

bivelocity, discussed in the next section.

2.5 Rotor Driven Flow

In 1993 Ashish Bagai and J. Gordon Leishman performed an analytic analysis on

compressible vortex flows with respect to rotary-wing devices such as propellers and

helicopter blades [18]. Like Colonius, Lele, and Moin, Bagai and Leishman were

concerned with the models for acoustics and hoped to develop a general solution to

compressible vortices.

Bagai and Leishman were aware of the experimental problems in vortex modeling.

Mostly with respect to intrusive measurement systems such as hot-wire anemometry

and multi-hole pressure probes, which are controversial as the probes themselves

could interfere with the vortex structure. Similarly, non-intrusive methods such

as laser velocimetry - Such as those used by Mandella and Bershader - are also

unreliable, due to the poor readability with high tangential velocities. Regardless,

shadowography was used to create flow visualizations of propeller wakes.

To perform these analytic predictions, Bagai and Leishman utilized the local light

refractive effects produced by density variations. Through their derivations, Bagai

and Leishman developed the following velocity profile predictor

vθ(r) =
Γ∞ r

2π (r2n
c + r2n)1/n

(10)

Utilizing different integers of n, Bagai and Leishman were able to generate a number

of vortices (such as the Rankine free vortex), but the goal was to predict a specific

subset of vortices, not create an overarching theory. While some of the evaluative

techniques were useful, this solution could not be applied to this paper.
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3 Bivelocity Hydrodynamics

3.1 Introduction and Formation

Bivelocity theory is named for its consideration of two independent velocities, which

is in contrast with traditional theories. Bivelocity also applies to compressible flows

in general, without being bound to either continuum or non-continuum cases, which

is again in contrast with traditional methods. In this paper vm and vυ represent the

mass and volume velocities respectively, where volume velocity is defined as the sum

of the mass velocity and the diffusive flux density,

vυ = vm + jυ (11)

Essentially, the mass velocity accounts for the bulk fluid movement through the

system, where the volume velocity accounts for the expansion (or contraction) of

the fluid due to the non-constant density [1, 19]. So far, bivelocity theory has been

successful in describing experimental data in both continuum and statistical flows [22].

Recently, bivelocity has been successfully applied to micro-Couette flows [13, 23].

3.2 Volume and Momentum Transport

It is well understood that volume cannot always be considered a conserved quantity.

An example where this holds true is when one mixes quantities of hot and cold

water (adiabatically and isobarically). It can be observed that once allowed to reach

thermal equilibrium, the resultant fluid volume will not be the sum of the initial hot

and cold volumes [13, 24].

Brenner derived the “volume continuity equation” seen below [24]

∇ · nv = πv, (12)

where nv is the Eulerian flux density of volume, and πv is the volume production

rate. There is no Newtonian mechanics counterpart to πv, making this continuity

Page 14



3.3 Continuum Phoretic Motions 3 BIVELOCITY HYDRODYNAMICS

equation fundamentally different from other transport quantities. Every particle in a

continuum flow contains no volume, whereas in non-continuum flows every point-size

particle carries mass, momentum, and energy.

Since momentum production in bivelocity is unchanged from the NSF case, it

is the accounting of volume that separates bivelocity and Navier-Stokes-Fourier

(NSF).

3.3 Continuum Approach to Phoretic Motions

While they had not yet coined the name bivelocity, Brenner and Bielenberg proposed

the idea in 2005 of accounting for two separate but dependent velocities in continuum

fluid mechanics [22]. This came about from studying the motion of particles by

thermophoresis when it was discovered that aerosol particle motion near heated

surfaces was not driven thermally, but rather by a resulting pressure gradient. This

pressure - not temperature - gradient caused a discrepancy between barycentric

velocity (vm) and volume velocity (vv), and would ultimately become the focal point

of numerous publications on the subject, including this paper.

3.4 Incompletness of Navier-Stokes-Fourier

After proposing his bivelocity theory in 2010, Howard Brenner followed up with

a proof exemplifying the incompleteness of the Navier-Stokes-Fourier (NSF) with

relation to compressible flows [21]. Brenner began with the widely accepted trans-

port phenomena energy equation where the velocity is largely defined by its task in

altering the pressure tensor. The belief was the velocity term was defined solely as

the barycentric velocity, and not in any part as the volume velocity.

It was demonstrated that in order for the NSF equations to maintain their complete

general form, a single flux term would not be sufficient. While in most continuum

cases both terms may not have equal significance, both must be present to maintain

completeness. This was obtained through an importantly simple counterexample of
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steady quiescent flow where linear irreversible thermodynamic principals show the

volume velocity is non-zero.

These series of examples and stark realizations of Navier-Stokes-Fourier’s inade-

quacies have become the backbone for a multi-velocity comprehensive general fluid

theory.

3.5 Bivelocity and Navier-Stokes-Fourier Heat Conduction

To further his point, Brenner illustrated a surprising comparison between bivelocity

and compressible Navier-Stokes-Fourier [20]. It has been known that NSF is un-

satisfactory in rarefied gas flows (non-small Knudsen numbers), but has not been

confirmed for gaseous continua - as was commonly believed. Brenner offered a

simulation to test the viability of NSF in this region.

To determine the validity, Brenner considered an annulus between concentric solid

cylinders; the space between was filled with various noble gasses. Both cylinders

would rotate at constant angular velocity, and would be bound with the same

temperature. The NSF scheme predicts that the gas - moving as a rigid body -

would have a uniform temperature distribution. The gasses did in fact not contain a

uniform temperature gradient, and under these specific tests, varied as much as 15◦C

[20], bringing the validity of NSF into question. This was a stark realization, with

Navier-Stokes having been used in continuum mechanics for more than a century

and a half. In contrast, bivelocity was evaluated to determine the magnitude of

the expected temperature change, which were also shown to be large enough to be

measured with relatively primitive thermometers.

3.6 Bivelocity Shock Waves

Bounding off of Brenner’s determination of bivelocity, Greenshields and Reese tested

the robustness of bivelocity utilizing shock waves [25]. Since the bivelocity modifica-

tions are most important in flows with high density gradients, shock waves make an
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excellent evaluation tool.

Initial results suggested that bivelocity was inadequate, and nonsensical physi-

cal relationships developed. This was attributed to the instances when kinematic

viscosity was less than the volume diffusion coefficient. Once these two properties

were equated, bivelocity began to outperform Navier-Stokes [25].

3.7 Micro-Channel Couette Flow

In addition to Mandella’s experimental results, previous success with bivelocity in

micro-channel couette flow [13, 23] has led to the adoption of this theory to vortex

flows. Walls et al utilized Brenner’s bivelocity equations governing mass, momentum

and energy transport for a steady, ideal body force free gas [23]. Integral to the

Couette solution was the proper application of boundary conditions, since Couette

flow is shear driven, and not gradient driven. Following Brenner’s lead, Walls used a

no-slip boundary condition at the walls - contrary to traditional micro-channel flows

with Knudsen numbers near 1 [26].

Ultimately, while Walls’ adaptation of bivelocity accurately predicted tempera-

ture, density, and pressure profiles, it proved difficult to draw definitive conclusions

given the very limited and aging experimental data sets existing for micro-channel

Couette flow. However, Walls demonstrated the functionality of bivelocity over a

range of Knudsen numbers, affecting the density distribution and temperature.
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3.8 Governing Equations and Bivelocity Derivation

For the full step-by-step derivation of the governing equations and their bivelocity

terms, see attached Appendix A. Below is an abbreviated expansion for the purposes

of illustrating bivelocity’s place in the governing equations.

3.8.1 Continuity

The conservation of mass - or continuity - for this compressible system can be

defined in totality as seen in numerous previous works [2]. However, for the sake of

completeness, continuity will begin with the bivelocity equation governing transport

of mass [1].

∂ρ

∂t
+∇ · (ρv) = 0 (13)

Separating the velocity vector and carrying density through, as well as accounting for

the system’s two-dimensional and axisymmetric nature, the final continuity equation

becomes

∂ρ

∂t
+

1

r

∂

∂r

(
rρvr

)
= 0 (14)

The axisymmetric assumption is seen in previous work, and this equation is no

different than the equations used by Mandella [2], Colonius et al [4], or Ellenrider

and Cantwell [17], as there is no continuity bivelocity term to account for. One

of the motivations behind the axtsymmetric assumption stems from Mandella’s

interferograms and velocity data. As seen previously in Figure 1, the inner density

variations can be seen as concentric circles, and thus support the axisymmetric

notion. Additionally, Mandella’s tangential velocity values dwarf the radial velocity

terms by three orders of magnitude. This disparity would allow for an introduced

particle to circumnavigate the vortex with negligible change in radial distance.
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3.8.2 Conservation of Momentum

Similar to continuity, the launching point for the momentum equations is Brenner’s

bivelocity [1]

ρ
Dvm
Dt

+ ρvm · (∇ · vm) = −∇ ·P (15)

The pressure tensor P can be rewritten and substituted back into the momentum

equation before it is split into its radial and tangential components.

ρ
∂ur
∂t

+ ρ (vm · ∇)ur − ρ
u2
θ

r
= −∂p

∂r
+∇ ·T|rr

ρ
∂uθ
∂t

+ ρ (vm · ∇)uθ − ρ
uruθ
r

= ∇ ·T|rθ
(16)

Furthermore, evaluating the viscous stress tensor, the volume velocity, and taking

into account the axial symmetry and lack of a third spatial dimension, the system

ultimately yields

ρ
∂ur
∂t

+ ρ ur
∂ur
∂r
−(ρ

u2
θ

r
) = −∂p

∂r
+

1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂

∂r
(
C

Pr

µ

ρ2

∂ρ

∂r
))

ρ
∂uθ
∂t

+ ρ ur
∂uθ
∂r

+ (ρ
uruθ
r

) =
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(17)

3.8.3 Conservation of Energy

Conservation of energy can again be derived from Brenner’s bivelocity [1]

ρ
Dû

Dt
+ ρvm · ∇ê = −∇ · Je (18)

Evaluating all fluxes, substituting thermal conductivities and specific heats, redefining

temperature gradients and pressure tensors, the energy equation takes on a whole

new form
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Je = Ju + P · vυ (19)

Ju = −k′∇T (20)

∇T = (
∂T

∂r
)ir + (

1

r

∂T

∂θ
)iθ (21)

(P · v) = Pijvj (22)

Where the substitutions now result in

ρ
Dû

Dt
+ ρv ·∇ê =

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r (Prr ur + Prθ uθ))−

1

r

∂

∂r
(r (Prr J

r
υ)) (23)

û in this case represents the internal energy, which can be modeled as temperature.

Remaining pressure tensors can be unfolded into each appropriate direction, and the

flux term can be evaluated as

Jrυ =
C

Pr
γ

1

ρ

dρ

dr
(24)

Producing a final result of

ρR
∂T

∂t
+ρ ur

∂

∂r
(
3

2
RT +

V2

2
) =

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

)ur

+ (p− rµ ∂
∂r

(
uθ
r

))uθ))−
1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

) (
C

Pr

µ

ρ2

∂ρ

∂r
)))

(25)

3.8.4 Ideal Gas

At this point, there exists four fundamental equations: continuity, conservation of

angular and radial momentum, and conservation of energy. However, the unknowns

include radial and tangential velocity, pressure, density, and temperature. Fortunately,
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the remaining equation can be taken from Ideal gas.

p = ρRT (26)

3.8.5 Dimensionless Forms

The full nondimensionalization of the above equations can be found in Appendix A.

Found here are the reduced steps involved in the nondimensionalizing process.

Before the governing equations can be made dimensionless, each parameter must be

defined with respect to a reference. In some instances this is very straight forward.

Temperature, pressure, viscosity, radius, and density can be referred to by a far-field

value. This designs the system to return all these properties to a value of one as

radius tends to infinity. The velocities are nondimensionalized in a manner similar

to Walls and Xue [13, 27]

ũr =
ur√
RTo

r̃ =
r

ro

ρ̃ =
ρ

ρo

ũθ =
uθ√
RTo

p̃ =
p

po

k̃ =
k

µo ĉp

T̃ =
T

To

µ̃ =
µ

µo

t̃ =
t

r2
o ρo 10−2 µ−1

o

The last parameter listed, time, is nondimensionalized in a different fashion than

the rest. With the axisymmetric and two-dimensional flow assumptions, quantities

are convected by radial velocity alone; and with ur � uθ, convection is of secondary

importance. Colonius, Lele, and Moin expanded the timescale to be able to observe

the evolution of the vortex on both the fast acoustic time, and the slow viscous time

[4].

Since the fluid is modeled as Maxwellian and monatomic, thermal conductivity
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and dynamic viscosity are proportional to temperature such that

µ̃ = T̃ k̃ =
3

2
T̃

The goal is to either cancel out dimensional terms, or substitute them out for

dimensionless parameters such as the Knudsen or Prandtl numbers, shown below.

Kno =
µo

ρo ro
√
RTo

Pr = ĉp
µ̃ µo

k̃ µo ĉp
=
µ̃

k̃
=

2

3

Beginning with the continuity equation (14) rewritten below, the substitutions of

the above nondimensional factors can be done quickly.

∂ρ

∂t
+

1

r

∂

∂r

(
rρvr

)
= 0 (27)

Expanding the derivatives and collecting all the initial parameters on one side yields

100
∂ρ̃

∂t̃
+
ρo ro

√
RTo

µo

[
ũr
∂ρ̃

∂r̃
+ ρ̃

∂ũr
∂r̃

+
ρ̃

r̃
ũr

]
= 0 (28)

Immediately apparent is the inverse of the Knudsen number remaining in front of

the second term. The final solution can be written as

100
∂ρ̃

∂t̃
+

1

Kno

[
ũr
∂ρ̃

∂r̃
+ ρ̃

∂ũr
∂r̃

+
ρ̃

r̃
ũr

]
= 0 (29)

With radial and angular momentum respectively (equation 17) things become slightly

more complex.

ρ
∂ur
∂t

+ ρ ur
∂ur
∂r
−(ρ

u2
θ

r
) = −dp

dr
+

1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂

∂r
(
C

Pr

µ

ρ2

dρ

dr
))

ρ
∂uθ
∂t

+ ρ ur
∂uθ
∂r

+ (ρ
uruθ
r

) =
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(30)

Again, substituting all the dimensionless quantities in, the equations transform to

Radial:
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(
100µo

√
RTo

r2
o

)
ρ̃
∂ũr

∂t̃
+

(
ρoRTo
ro

)
ρ̃ ũr

∂ũr
∂r̃
−
(
ρoRTo
ro

)
ρ̃ ũθ

2

r̃
=

(
−po
ro

)
∂p̃

∂r̃

+

(
µo
√
RTo
r2
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−
(
µo
√
RTo
r2
o

)
µ̃ ũr
r̃2

+

(
C µ2

o

Pr ρo r3
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)] (31)

Angular:

(
100µo

√
RTo

r2
o

)
ρ̃
∂ũθ

∂t̃
+

(
ρoRTo
ro

)
ρ̃ ũr

∂ũθ
∂r̃

+

(
ρoRTo
ro

)
ρ̃ ũθ ũr
r̃

=(
µo
√
RTo
r2
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũθ
∂r̃

]
−
(
µo
√
RTo
r2
o

)
µ̃ ũθ
r̃2

(32)

Canceling and collecting terms, and recognizing the Knudsen and Prandtl numbers,

radial and angular momentum respectively become

100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
= −∂p̃

∂r̃
+Kno

1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−Kno

µ̃ ũr
r̃2

+

(
3C Kn2

o

2

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)] (33)

100Kno ρ̃
∂ũθ

∂t̃
+ ρ̃ ũr

∂ũθ
∂r̃

+
ρ̃ ũθ ũr
r̃

=
Kno
r̃

∂

∂r̃

[
r̃ µ̃

∂ũθ
∂r̃

]
−Kno

µ̃ ũθ
r̃2

(34)

Energy starts as equation 25

ρR
∂T

∂t
+ρ ur

∂

∂r
(
3

2
RT +

V2

2
) =

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

)ur

+ (p− rµ ∂
∂r

(
uθ
r

))uθ))−
1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

) (
C

Pr

µ

ρ2

dρ

dr
)))

(35)

An expansion of the derivatives and dimensionless substitutions yield
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100µoRTo
r2
o

(
ρ̃
∂T̃

∂t̃

)
+

1

2

ρ̃ ρo ũr
ro

(RTo)
3/2 [3

∂T̃

∂r̃
+
∂ũ2

r

∂r̃
+
∂ũ2

θ

∂r̃
] =

1

r̃ r2
o

∂

∂r̃
(
3

5
k̃ µo ĉp r̃ ro

To
ro

∂T̃

∂r̃
)− 1

r̃ r2
o

∂

∂r̃
[r̃ rop̃ po

√
RTo (ũr + ũθ)]

+
1

r̃ r2
o

∂

∂r̃
[2r̃ ro µ̃ µoũr

RTo
ro

∂ũr
∂r̃

+ r̃2 r2
o µ̃ µo ũθ

RTo
r2
o

∂

∂r̃
(
ũθ
r̃

)]

− C

r̃ r2
o Pr

∂

∂r̃
[
r̃ ro µ̃ µo p̃ po

ρ̃2 ρ2
o

ρo
ro

∂ρ̃

∂r̃
] +

2C

r̃ r2
o Pr

∂

∂r̃
[
r̃ ro µ̃

2µ2
o

ρ̃2 ρ2
o

ρo
√
RTo
r2
o

∂ρ̃

∂r̃

∂ũr
∂r̃

]

(36)

Canceling and collecting terms leads to the final form of

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr) [3

∂T̃

∂r̃
+
∂ũ2

r

∂r̃
+
∂ũ2

θ

∂r̃
] = (

45

20
Kno)

1

r̃

∂

∂r̃
[r̃ T̃

∂T̃

∂r̃
]

− 1

r̃

∂

∂r̃
[r̃p̃ (ũr + ũθ)] + (Kno)

1

r̃

∂

∂r̃
[2 r̃ µ̃ ũr

∂ũr
∂r̃

+ r̃2 µ̃ ũθ
∂

∂r̃
(
ũθ
r̃

)]

− (
3C

2
Kno)

1

r̃

∂

∂r̃
[
r̃ µ̃ p̃

ρ̃2

∂ρ̃

∂r̃
] + (3C Kn2

o)
1

r̃

∂

∂r̃
[
r̃ µ̃2

ρ̃2

∂ρ̃

∂r̃

∂ũr
∂r̃

]

(37)

Lastly, ideal gas is the simplest. Beginning with equation 26

p = ρRT (38)

A quick substitution yields the form

p̃ = ρ̃ T̃ (39)
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3.9 Bivelocity Significance

3.9.1 Absolute Significance

Before delving into the application of bivelocity to all governing equations, its

significance can be determined by evaluating the bivelocity term (as seen below in

the second line of the radial momentum conservation equation derived in Appendix

A as equation 154)

100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

dũr
dr̃
− ρ̃ ũθ

2

r̃
= −dp̃

dr̃
+

(
Kno

)
1

r̃

d

dr̃

[
r̃ µ̃

dũr
dr̃

]
−
(
Kno

)
µ̃ ũr
r̃2

+

(
C Kn2

o

Pr

)
1

r̃

d

dr̃

[
r̃ µ̃

d

dr̃

(
µ̃

ρ̃2

dρ̃

dr̃

)]
(40)

While Mandella’s curve-fits are not derived from the governing equations, their

accuracy in describing the vortex behavior is useful. Before attempting to solve the

bivelocity equation set, bivelocity’s significance can be determined by substituting in

Mandella’s values for a comparison. If we utilize Mandella’s equations for density

and pressure (equations 8 and 9 respectively) with temperature below.

T =
p

R ρ
(41)

Since the radial momentum equation has been nondimensionalized - and this is gener-

ally a more compact form - Mandella’s equations can be quickly nondimensionalized,

and become

ρ̃ = 1− ∆ρ/ρ∞

1 + ( r̃
∆r )2

(42)

p̃ = 1− ∆p/p∞

1 + ( r̃
∆rp)2

(43)

T̃ =
p̃

R ρ̃ T∞
(44)
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With these terms, the bivelocity term can be calculated directly. Assuming Kno = 0.1,

C = 1, and Pr = 2/3, with Mathematica we find a bivelocity correction profile

shown below. Since all parameters have been nondimensionalized (including the

radius), it is only the power of the term that is being observed.

Figure 5: Evaluation of bivelocity component

(
C Kn2

o
Pr

)
1
r̃
d
dr̃

[
r̃ µ̃ d

dr̃

(
µ̃
ρ̃2
dρ̃
dr̃

)]
utilizing

Mandella’s temperature and density

Similarly, the bivelocity component of the energy equation can be evaluated (Third

line seen below and derived from equation 177 in Appendix A)

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr)

[
3
dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃

]
= (

45

20
Kno)

1

r̃

d

dr̃

[
r̃ T̃

dT̃

dr̃

]

− 1

r̃

d

dr̃

[
r̃p̃ (ũr + ũθ)

]
+ (Kno)

1

r̃

d

dr̃

[
2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)

]

−

(
C

Pr
Kno

)
1

r̃

d

dr̃

[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃

]
+

(
2C

Pr
Kn2

o

)
1

r̃

d

dr̃

[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

] (45)

Which will develop in a similar fashion seen below.
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Figure 6: Evaluation of bivelocity component(
−C
Pr Kno

)
1
r̃
d
dr̃

[
r̃ µ̃ p̃
ρ̃2

dρ̃
dr̃

]
+

(
2C
Pr Kn

2
o

)
1
r̃
d
dr̃

[
r̃ µ̃2

ρ̃2
dρ̃
dr̃
dũr
dr̃

]
utilizing Mandella’s temperature, pressure, density, and velocity

These curves illustrate bivelocity’s importance to the equation set by showing a

relative bump in generic value (Whether it’s velocity or temperature), as is expected

in the developed viscous layer. Additionally, both tend to zero at far-field radii, as

there should be little to no contribution of these compressibility effects far from the

center. Both also show some destabilization below r̃ = 0.1, which correlates to the

singularity issues encountered and discussed later in this paper.

3.9.2 Relative Significance

While the significance of the bivelocity term is important, it is only useful to talk

about bivelocity significance with respect to the power of the remaining terms. The

energy equation’s bivelocity component may contribute up to a factor of 10, but if

the remaining terms contribute a factor of 1000, the bivelocity term would be quite

insignificant. Below is the rewritten form of the radial momentum (31) equation

developed previously
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100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
= −dp̃

∂r̃
+Kno

1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−Kno

µ̃ ũr
r̃2

+

(
3C Kn2

o

2

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)] (46)

Looking at the rest of the factors

100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
+
dp̃

∂r̃

−Kno
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
+Kno

µ̃ ũr
r̃2

= 0

(47)

Since every parameter is dimensionless, their additive properties should yield a

meaningful comparison. Below in Figure 7 the radial momentum bivelocity term can

again be seen (blue), but is compared to the viscous term (yellow). The bivelocity

term is about a quarter of the strength of the viscous term, and while not an

incredibly powerful contribution, it should not be ignored either.

Figure 7: Conservation of Radial Momentum Bivelocity term compared to the Vis-
cous term utilizing Mandella’s curve-fits
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It should be mentioned that the above viscous term excludes the transient parameter.

This was done because each property was computed utilizing Mandella’s curve fitting

equations. Because Mandella evaluated at specific times (these values come from

approximately 500µs), a transient term could not be employed. Below in Figure 8

the same comparison can be seen with bivelocity and the viscous term for the energy

equation.

Figure 8: Conservation of Energy Bivelocity term compared to the Viscous term
utilizing Mandella’s curve-fits

As with radial momentum, the property values come from Mandella’s curve-fit equa-

tions, and thus exclude transience. In this case however, the comparative power of

bivelocity is about half of the viscous term, and affects the system much closer to

the viscous layer.

Attention can be turned towards the effect of varied Knudsen numbers on the

strength of the bivelocity term. Below those effects can be seen for radial momentum

and energy.

Page 29



3.9 Bivelocity Significance 3 BIVELOCITY HYDRODYNAMICS

Figure 9: Effects of Knudsen number on radial momentum bivelocity

Figure 10: Effects of Knudsen number on energy bivelocity

Small perturbations in Knudsen number have a profound effect on the strength

of the bivelocity term. For both radial momentum and energy, the effects of the

bivelocity term when compared to the viscous term are negligible with Kno = 0.01.
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At approximately Kno = 0.2 the bivelocity term for radial momentum matches the

viscous effects, and surpasses them for energy.

Clearly, when a density gradient is present, this bivelocity term cannot be ignored.

The following sections develop a method to generically solve for the compressible

free vortex.
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4 The Singularity

Figure 11: 3-D Singularity Dump

Its important to note that the lower bound of the

radius for this paper was set to r̃ = 0.01. This

was done to simulate a solid cylinder at the cen-

ter of the vortex (with a nondimensional radius

of 0.01) to avoid the problem of a singularity.

If we consider for a moment the problem of a

three-dimensional vortex, as the fluid approaches

the center, it is dumped into the third dimen-

sion - say, the z-direction - as opposed to the

radial and angular directions. When this three

dimensional problem is solved in two dimensions,

the singularity cannot be evaluated easily, and

causes complications that propagate throughout the entire solution. The cylinder

- with some predefined rotation rate - prevents the singularity from becoming a

problem.
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5 Steady-State and ODEs

In this section the steady case is briefly explored. The first step was to create a

working set of equations to model incompressible isothermal flow - and then steady,

compressible, non-isothermal - in order to set a convergence benchmark. Primary

derivations begin with Radial and Angular Momentum equations which were derived

in the fully compressible and time-dependent case (see Appendix A). The following

sections show how the desired equations are formed, and how they are used in

MatLab to simulate steady vortex flows.

5.1 Steady Equation Set

The bivelocity terms have been removed from these equations to bring the equation

set back to the starting point similar to others’ equations who have worked on this

problem before. Utilizing the derivations in Appendix A, the steady-state equation

set can be represented by:

ρ̃ ũr
∂ũθ
∂r̃

+
ρ̃ ũθ ũr
r̃

=
Kno
r̃

∂

∂r̃

[
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∂ũθ
∂r̃

]
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µ̃ ũθ
r̃2

(48)
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2
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∂r̃
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∂r̃
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r̃ µ̃

∂ũr
∂r̃

]
−Kno
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r̃2
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1
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∂

∂r̃
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∂
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)] (49)
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(ρ̃ ũr) [3
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d

dr̃
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d

dr̃
(
ũθ
r̃

)]

(50)

ũr =
Ma

2π r̃ ρ̃
(51) p̃ = ρ̃ T̃ (52)

The boundary conditions for this equation set play an incredibly vital role and as

such, are chosen carefully. Before bivelocity is even added to the equation set, the
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goal is to match Mandella’s findings as closely as possible. Because Mandella fit

curves to his data, this gives a launching point to determine the boundary conditions.

5.2 Steady Compressible Results

Ultimately, the steady compressible solution converges either poorly or not at all

- depending on the method chosen. After further investigation, the problem lies

not with the compressiblity, but rather the steady-state assumption. Having used

the viscous layer as the benchmark for convergence, it can be stated with complete

certainty that it is in fact the time-dependency that allows the solution to form the

layer. A steady-state solution containing the viscous layer would in reality require

an infinite amount of input energy. This is, however, for the two dimensional case.

Figure 14 below illustrates the issue with these assumptions.

Figure 12: Two-Dimensional (left) vs. Three-Dimensional (right) Radial Flow

The problem arises because radial velocity is drawn inwards, but ultimately has

nowhere to go (unless a third dimension, or time dependency is introduced). The

past few sections have demonstrated with complete certainty that the steady-state

solution for a two-dimensional, compressible, axisymmetric vortex containing both

the forced vortex core and the free vortex far-field does not exist.
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Final convergence for the steady solution can be seen below. While properties

like temperature, pressure, and density displayed expected characteristics, the veloci-

ties match the expected inviscid solution where no viscous layer is formed.

Nondimensional Radius (r)
0 1 2 3 4 5 6 7 8 9 10

N
on

di
m

en
si

on
al

 R
ad

ia
l V

el
oc

ity
 (

U
r)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 13: Steady radial velocity displaying inviscid characteristics
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Figure 14: Steady tangential velocity displaying inviscid characteristics

With all options exhausted for this time-independent scinario, attention must be
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turned towards the transient solution. Only the transient solution derivative terms

can account for the stored energy, as the viscous layer develops. This is an important

conclusion, considering that Walls - a bivelocity predecessor - successfully solved the

steady solution for micro-channel Couette flow.
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6 Transience and PDEs

With the importance of bivelocity already shown, the challenge is in the convergence

of the equation set with bivelocity terms added. The previous section has shown the

importance of transience, but adding time dependency moves this problem from a

set of ordinary differential equations (ODEs) - whose only dependency was radius -

to partial differential equations (PDEs) - with both radius and time.

The alterations to the equations (seen in Appendix A) required minimal effort,

but great care must be taken to maintain nondimensionality. Previously, with the

ODE scheme, two of the fundamental equations - continuity and ideal gas - could

be written explicitly. With the new time dependency, a new density term appears

in the continuity equation which renders it a differential equation. The remaining

ideal gas equation, however, can be substituted inside the remaining conservation of

momentum and conservation of energy. The fundamental equations for this section

are listed below:

Continuity:

100
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+

1
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[
ũr
∂ρ̃

∂r̃
+ ρ̃

∂ũr
∂r̃

+
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r̃
ũr

]
= 0 (53)

Conservation of Angular Momentum:
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∂ũθ
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∂
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]
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Conservation of Radial Momentum:
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)] (55)

Conservation of Energy:
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(56)

And Ideal Gas:

p̃ = ρ̃ T̃ (57)

As mentioned above, the ideal gas term can be substituted into the remaining

equations, leaving a system of four, which will aid Mathematica’s computational

time.

6.1 Initial and Boundary Conditions

Determining the initial and boundary conditions is arguably one of the most impor-

tant processes in solving this system of equations. Inadequate boundary and initial

conditions can cause problems ranging from false solutions to failed convergence.

Since the desire is to determine the properties at a final time for all radii, the

boundary conditions should focus on the behavior of the system at low and high

radii at all times.

The properties at far-field radii are straight forward, since all properties have been

nondimensionalized. The velocities will diminish to zero and temperature, density,

and pressure will return to ambient conditions with a value of one. Additionally, all

these derivatives are set to zero, as there would be no change from point-to-point at

high radii values. The values for the end boundary condition can be seen below in

Table 1.
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Property Value ∂
∂ r (Value)

ρ̃ 1 0

T̃ 1 0

ũθ 0 0

ũr 0 0

Table 1: Property values at r̃ = 10

Determining low radii values requires a little finesse. Since singularity issues are

encountered at a zero radius value, this system can only be accurately solved down

to a magnitude of r̃ = 0.01. This allows for the development of the viscous layer,

without extremely low radii values distorting the properties. In order to choose

values at r̃ = 0.01, Mandella’s Cauchy curve fitting can be utilized.

Mandella’s nondimensionalized density, pressure, and temperature are drawn from

equations 42, 43, and 44 respectively. Additionally, Mandella’s velocity is represented

by:

uθ =
( r

∆rp
)

1 + ( r
∆rp

)2

[
2 ∆P

ρ∞ − ∆ ρ
1+( r

∆ rρ
)2

] 1
2

(58)

While Mandella does not explicitly give an equation for radial velocity, the curve fit

contains the same structure, only symmetric about the x-axis. Both tangential and

radial velocity can be nondimensionalized at r = 1 where the boundary of the vortex

exists. Density, pressure, and temperature were nondimensionalized at r = 10 since

far-field values return to one, whereas velocities fade to zero. The final low radii

values of all properties can be seen below in Table 2.
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Property Value

ρ̃ 0.399

T̃ 0.750

ũθ 1.1529

ũr -1.1529

Table 2: Property values at r̃ = 0.01

With the boundary conditions set, attention is turned towards the initial conditions.

The low radii boundary condition was set for a specific radius over all times, whereas

the initial conditions will be set for all radii at a specific time, in this case t̃ = 0,

since t̃ =∞ is the desired outcome.

The system begins at rest, with velocities equal to zero, and temperature and

density equal to one (ambient conditions). At t̃ = 0 the solid inner core with a radius

of 0.01 begins to rotate (this cylinder does two things - provides the driving force

behind our system, and eliminates the singularity). Seen below in Figure 15 are

the tangential velocity (blue) and density (yellow) initial conditions, with forcing at

r̃ = 0.01

Figure 15: Tangential velocity and density initial conditions
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The initial conditions are set up in this way for continuity’s sake. The initial

conditions must match the boundary conditions at all overlapping edges. Obviously,

these piecewise functions create a separate issue. Mathematica cannot use the

piecewise function, and instead utilizes a curve-fit, seen below in Figure 16.

Figure 16: Curve-fit of tangential velocity initial condition (t̃ = 0 and Kno = 0.1)

When allowed to run until t̃ = 50, at which time the system stabilizes, we find a

velocity profile seen below in Figure 17.

Figure 17: Final tangential velocity at t̃ = 50 and Kno = 0.1
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This is an unexpected result, as there is no velocity peak in the viscous layer.

Additionally the radial velocity produces no such peak either. However, the remaining

properties: temperature, pressure, and density all perform as expected, and are

compared to Mandella’s curve-fit plots.

Figure 18: Final radial velocity at t̃ = 50 and Kno = 0.1

Figure 19: Final density at t̃ = 50 and Kno = 0.1 vs. Mandella at t = 496µs
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Figure 20: Final pressure at t̃ = 50 and Kno = 0.1 vs. Mandella at t = 496µs

Figure 21: Final Temperature at t̃ = 50 and Kno = 0.1 vs. Mandella at t = 496µs

It’s important to note the time-frame in which these solutions are compared to

Mandella’s. The dimensionless time of t̃ = 50 corresponds to approximately 100µs or

about 1/5 of the time at which Mandella took his readings. After t̃ = 50 the solution

begins to break down, hence the shorter time frame. First impressions lead to the

belief that a shorter time frame for convergence might produce a result more similar
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to Mandella’s. The viscous layer appears to be more developed than Mandella’s, and

that the shorter time frame may bring the layer closer to the core. Upon viewing the

convergence series (Figures 22 and 23 below) it can be seen that the layer develops

vertically.

Page 44



6.1 Initial and Boundary Conditions 6 TRANSIENCE AND PDES

Figure 22: States of convergence of temperature equation (at t̃ = 0, t̃ = 2, and t̃ = 4
respectively) compared to Mandella’s t = 496µs findings
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Figure 23: States of convergence of temperature equation (at t̃ = 7, t̃ = 13, and
t̃ = 27 respectively) compared to Mandella’s t = 496µs findings

In addition to how the solution develops across a single Knudsen number, it’s

important to observe the effects the Knudsen number has on final convergence.
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Figure 24: Final density at t̃ = 50 and various Knudsen numbers vs. Mandella at
t = 496µs

Figure 25: Final pressure at t̃ = 50 and various Knudsen numbers vs. Mandella at
t = 496µs
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Figure 26: Final Temperature at t̃ = 50 and various Knudsen numbers vs. Mandella
at t = 496µs

With only the velocities behaving unexpectedly, revisiting the initial conditions

becomes the first option. While the piecewise function may be the most correct, its

discontinuities may pose a significant problem. Instead, the initial conditions can

be modeled as ±1/(ns · r +A) +B, where ns adjusts the pitch or steepness of the

curves, and the constants A and B allow the curve to move about the axes to meet

the desired boundary conditions. While the right side boundary conditions extend to

the maximum radius of 10, much of the graph below in Figure 27 has been removed

to better illustrate the low radial curvature.
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Figure 27: Property initial conditions governed by ±1/(ns · r +A) +B with ns = 1

These curves are far more gradual, and the hope is that they produce better graphs,

as Mathematica does not need to curve fir the piecewise which can cause negative

values when none should be present. As expected, this greatly improves both the

veloctiy graphs, seen in Figures 28 and 29 below

Figure 28: Final tangential velocity at t̃ = 72 and Kno = 0.1
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Figure 29: Final radial velocity at t̃ = 72 and Kno = 0.1

While these plots meet expectations, the remaining temperature, pressure, and

density remain baffling

Figure 30: Final temperature at t̃ = 72 and Kno = 0.1
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Figure 31: Final pressure at t̃ = 72 and Kno = 0.1

Figure 32: Final density at t̃ = 72 and Kno = 0.1

Again, the effects of the Knudsen number can be observed. It immediately becomes

apparent that the problem is seriously ill posed. The velocities begin to fail at

increasingly earlier times, making the comparison of their convergence evermore

difficult.
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Figure 33: Final tangential velocity at t̃ = 32 vs. Mandella at t = 496µs

Figure 34: Final radial velocity at t̃ = 20 vs. Mandella at t = 496µs

Unable to approximate Mandella’s time scale, the convergence of these equations

cannot be trusted. Note that these timescales are t̃ = 32 and t̃ = 20 respectively.

Far lower than the original Kno = 0.1 and far lower still of Mandella’s t = 496µs.

The next conclusion is the total solution might reside somewhere between in the

region of 1 > ns > ∞, where 1 gives desirable velocities and ∞ (effectively the

piecewise function) returns the target temperature curve. It becomes apparent quite
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quickly that ns→∞ is severely disproportionate. The same effects the piecewise

function returns can be achieved to a degree of similarity with values of ns as

low as 10. As ns → 1, all properties remain well behaved, though temperature’s

viscous layer peak begins to diminish. In fact, the transition appears to occur from

1.0 < ns < 1.1. Instabilities of this magnitude may in fact be attributed to the

derivatives of the initial conditions. Even if this region could be found, the Knudsen

number effects are too erratic to predict.

Page 53



7 DISCUSSION

7 Discussion

This thesis has presented numerous competing theories on predicting compressible

vortex structures. The Navier-Stokes and Burnett equations have been shown to be

inadequate, and while bivelocity has shown promise in recent years, a general solution

could not be solved. Multiple initial and boundary conditions were presented, but

only a partial solution could be obtained. Discounting pressure - since pressure was

shown to be a product of temperature and density - the two velocities matched the

expected behavior when given a continuous and gradual boundary condition (at

t̃ = 0) seen above in Figure 27. However, given a piecewise condition (Figure 15) -

or even a continuous but steep boundary conditions - velocities act as if the system

were a completely free vortex.

It can also be stated with certainty that the traditional NSF methods for describing

vortex motion - or non-continuum flows in general - are inadequate [19, 20, 21] and

the proofs provided by this paper on the comparative power of bivelocity to the

remaining NSF terms reinforce this idea for the specific vortex case.

7.1 Knudsen Number

This paper was able to demonstrate the importance of the Knudsen number as

applied to bivelocity. As the Knudsen number increases, so does the power of the

bivelocity term. At approximately Kno = 0.2 the bivelocity term is on the same

order of magnitude as the viscous effects.

7.2 Convergence

The greatest variation to the current system stems from the initial and boundary

conditions alone. There is clearly a fine line for convergence, and it may be appropriate

to explore additional avenues to ease Mathematica’s computations. Several oddities

exist - and most likely stem from - the initial and boundary conditions which affect

the convergence. Notably, how time dependence affects the development of the
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temperature’s viscous layer. It was expected that the layer would begin smaller and

closer to the core, and as the layer develops, it would spread outward. Interestingly,

as convergence data shows, this solution shows the layer developing vertically and

not propagating from the core outwards.

7.3 Experimental Validation

Mandella performed his interferogram experiments nearly 30 years ago. While

Mandella’s data is often cited with respect to compressible vortices, his data is in

actuality somewhat chaotic. This paper could not accurately represent Mandella’s

findings, however in the interest of finding a solution to this problem, increased

accuracy could enhance the finding of a solution. Additionally, Mandella presents

most data at the 500µs range, though it would be more beneficial to increase the

resolution since this problem can only be solved in transience.

8 Concluding Remarks

Previously, bivelocity has demonstrated its adaptability to various various corners of

fluid dynamics. While it maintains advantages over the traditional methods - such as

Navier-Stokes - it has yet to be proven for numerous instances of fluid flow, including

compressible vortices. This paper successfully derives the appropriate compressible

vortex equation sets, and is able to prove the relative importance of bivelocity, but is

unable to match past data or expected behavioral patterns completely. The propor-

tionality between the Knudsen number and the power of the bivelocity term shows

promising results. Depending on the initial and boundary conditions, the proper

viscous layer could be demonstrated to exist - and match Mandella’s findings - with

theoretical velocity profiles. However, with the appropriate velocity profiles comes a

discrepancy in temperature and density. Altering the initial and boundary conditions

leads either to the desired velocities, or temperature and density, but not both.

Further inspection into initial and boundary condition effects should be examined,

and is most likely the best course of action to gain the desired convergence. Because
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of the sensitivity to the initial and boundary conditions, this problem is not well posed.

Glaringly absent from this and others’ work is an analysis of a third dimension. It is

entirely possible that the key to solving this problem lies in the z-direction. Since

radial flow is driven towards the core, it could be said that the transient compress-

ibility is not enough to absorb the totality of this term. Since it is known that the

fluid moves along the core in the third dimension after leaving the two-dimensional

surface, this could potentially alter the convergence of this problem.
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9 Appendix A

9.1 Mass Equation

Derivation of the mass equation:

Begin with bivelocity equation governing transport of mass

∂ρ

∂t
+∇ · (ρv) = 0 (59)

The velocity vector can be separated into its two fundamental components

v = ur ir + uθ iθ (60)

We know if we carry density through, the divergence vector is defined as

∇ · (ρv) =
1

r

∂

∂r
(ρ r ur) +

1

r

∂

∂θ
(ρ uθ) (61)

However, due to the axisymmetric nature of the vortex,

∂

∂θ
= 0 (62)

Such that

∇ · (ρv) =
1

r

∂

∂r
(ρ r ur) (63)

Since we know that

∂ρ

∂t
+

1

r

∂

∂r
(ρ r ur) = 0 (64)

It holds true that

∂ρ

∂t
+ ur

∂ρ

∂r
+ ρ

∂ur
∂r

+
ρ

r
ur = 0 (65)
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9.2 Momentum Equation

Derivation of the momentum equation:

Begin with bivelocity equation governing transport of momentum

ρ
Dvm
Dt

+ ρvm · (∇ · vm) = −∇ ·P (66)

P is a tensor, and can be rewritten as

P = I p−T (67)

When substituted into Equation 66 we find

ρ
Dvm
Dt

+ ρvm · (∇ · vm) = −∇p+∇ ·T (68)

The momentum equation must be broken into two components. The radial and

angular momentum equations.

ρ
∂ur
∂t

+ ρ (vm · ∇)ur − ρ
u2
θ

r
= −dp

dr
+∇ ·T|rr (69)

ρ
∂uθ
∂t

+ ρ (vm · ∇)uθ − ρ
uruθ
r

= ∇ ·T|rθ (70)

Note they are almost identical, but the angular momentum equation is missing the

pressure term. This is because there is no pressure gradient in the angular direction

(axisymmetric).

The viscous stress tensor is defined as

T = 2µ∇vυ (71)

Where the volume velocity is defined as

vυ = vm + Jυ (72)
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We can expand Equation 71 into two parts

T = 2µ∇vm + 2µ∇Jυ (73)

The viscous stress tensor can be separated into it’s radial and angular directions

T|rr = 2µ∇v|rr + 2µ∇Jυ|rr (74)

T|rθ = 2µ∇v|rθ + 2µ∇Jυ|rθ (75)

Immediately we recognize the lack of an angular diffusive volume flux. So the angular

viscous stress tensor can be shortened to

T|rθ = 2µ∇v|rθ (76)

Here, the overbars in the above equations represent the tensor’s symmetric and

traceless form. For example,

D =
1

2
(D + DT )− 1

3
tr(D) (77)

In this case, tr() is the trace and the superscript T is the transpose.

It is important to note that our viscous stress tensor is already traceless, so the last

term is not required. When applied to our mass velocity - as seen in Equation 73 -

we find

∇v =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (78)

Here, the subscripts i and j represent our indices. In this problem, we require both

radial and angular components. First, an instance where i = j = r yields

∇v|rr =
1

2
(
∂ur
∂r

+
∂ur
∂r

) (79)
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The radial component of the mass velocity becomes

∇v|rr =
∂ur
∂r

(80)

In the second instance we have i = r and j = θ. The same Equation 78 yields

∇v|rθ =
1

2
(
∂ur
∂θ

+
∂uθ
∂r

) (81)

The angular component of the mass velocity becomes

∇v|rθ =
1

2

∂uθ
∂r

(82)

To complete the stress tensors, we must calculate ∇Jυ|r, which will be incredibly

similar to ∇v|r

∇Jυ|rr =
∂Jrυ
∂r

(83)

Substituting Equations 80, 82 and 83 into Equations 74 and 76, we find

T|rr = 2µ
∂ur
∂r

+ 2µ
∂Jrυ
∂r

(84)

T|rθ = µ
∂uθ
∂r

(85)

For these equations to be useful in solving Equations 69 and 70, we must calculate

the divergence of them.

∇ ·T|rr =
1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂Jrυ
∂r

) (86)

∇ ·T|rθ =
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(87)

Using the above derived equations, the right hand sides of Equations 69 and 70 looks

like
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ρ
∂ur
∂t

+ ρ (v · ∇)ur − ρ
u2
θ

r
= −dp

dr
+

1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂Jrυ
∂r

) (88)

ρ
∂uθ
∂t

+ ρ (v · ∇)uθ + ρ
uruθ
r

=
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(89)

The last step in completing the radial and angular momentum equations is simplifying

(v · ∇), which is defined as

(v · ∇) =
∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
(90)

Since we’ve defined our vortex as two-dimensional and axisymmetric, ∂
∂θ = 0 and

∂
∂z = 0. Multiplying this by the radial and angular components yields

ρ
∂ur
∂t

+ ρ ur
∂ur
∂r
− ρ

u2
θ

r
= −dp

dr
+

1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂Jrυ
∂r

) (91)

ρ
∂uθ
∂t

+ ρ ur
∂uθ
∂r

+ ρ
uruθ
r

=
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(92)

Next, we want to clean up these expressions. It is more helpful to have the equations

expressed as functions of ur, uθ, ρ, p and T . This requires removing Jrυ , which can

be defined as

Jυ =
C

Pr

µ

ρ
∇ln(ρ) (93)

And since

∇ln(ρ) =
1

ρ

dρ

dr
(94)

And since Jυ is only dependent on the radial direction, we find
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Jrυ =
C

Pr

µ

ρ2

dρ

dr
(95)

It is important to remember our fluid properties (like µ, k, γ, etc) are not constant.

Substituting Jrυ back into Equation 91, we find our finalized momentum equations

can be expressed as

ρ
∂ur
∂t

+ ρ ur
∂ur
∂r
− (ρ

u2
θ

r
) = −dp

dr
+

1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂

∂r
(
C

Pr

µ

ρ2

dρ

dr
))

(96)

ρ
∂uθ
∂t

+ ρ ur
∂uθ
∂r

+ (ρ
uruθ
r

) =
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(97)
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9.3 Energy Equation

Derivation of the energy equation:

Begin with bivelocity equation governing transport of energy

ρ
Dû

Dt
+ ρv · ∇ê = −∇ · Je (98)

Knowing that diffusive energy flux is dependent on internal energy flux as well as

pressure and volume velocity, we can write

Je = Ju + P · vυ (99)

Where internal energy flux is dependent on the gradient of temperature and the

thermal conductivity ratio

Ju = −k′∇T (100)

Where the thermal conductivity ratio is defined as

k′ =
k

γ
(101)

γ is defined as the ratio of specific heats

γ =
ĉp
ĉv

(102)

Each specific heat can be expressed as a function of the ideal gas constant R such

that γ becomes a constant

ĉp =
5

2
R and ĉv =

3

2
R (103)

γ =
5

3
(104)

So finally
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k′ =
3

5
k (105)

Ultimately, we can express energy flux as

Je = −k′∇T + (P · v) + (P · Jυ) (106)

First, we redefine the gradient of temperature

∇T = (
∂T

∂r
)ir + (

1

r

∂T

∂θ
)iθ (107)

Since the system is axisymmetric,

∇T = (
∂T

∂r
)ir (108)

The second and third terms of the right hand side of Equation 106 require a little

more detail since P is a tensor and v and Jυ are vectors. If we break this down and

look at the indices, we see

(P · v) = Pijvj (109)

In observing the radial and angular directions, we find

(P · v)|r = Prrur + Prθuθ (110)

(P · v)|θ = Pθrur + Pθθuθ (111)

Since the pressure matrix is symmetric, Pθr = Prθ.

The process is similar for Jυ. But since Jθυ , does not exist, the equations become

(P · Jυ)|r = PrrJ
r
υ + PrθJ

θ
υ = PrrJ

r
υ (112)
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(P · Jυ)|θ = PθrJ
r
υ + PθθJ

θ
υ = PθrJ

r
υ (113)

Substituting back into Equation 101, we find the radial and angular components of

Je to be

Jre = (−k′ ∂T
∂r

) + (Prr ur + Prθ uθ) + (Prr J
r
υ) (114)

Jθe = (Prθ ur + Pθθ uθ) + (Prθ J
r
υ) (115)

To continue the evaluation of Equation 98, we must take the divergence of Je

∇ · Je =
1

r

∂

∂r
(r Jre ) +

1

r

∂

∂θ
(Jθe ) (116)

Which loses the second term due to its axisymmetric nature

∇ · Je =
1

r

∂

∂r
(r Jre ) (117)

Jre from Equation 114 can be plugged into Equation 117 to find

∇ · Je =
1

r

∂

∂r
(r ((−k′ ∂T

∂r
) + (Prr ur + Prθ uθ) + (Prr J

r
υ))) (118)

Which can be separated to

∇ · Je = −1

r

∂

∂r
(k′ r

∂T

∂r
) +

1

r

∂

∂r
(r (Prr ur + Prθ uθ)) +

1

r

∂

∂r
(r (Prr J

r
υ)) (119)

Equation 98 now becomes

ρ
Dû

Dt
+ρv ·∇ê =

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r (Prr ur+Prθ uθ))−

1

r

∂

∂r
(r (Prr J

r
υ)) (120)
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Because of mass conservation, the right hand side can be rewritten as

ρv · ∇ê = ∇ · (ρvê) (121)

Noting the axisymmetric nature, the gradient of energy ê is

∇ê = (
∂ê

∂r
)ir + (

∂ê

∂θ
)iθ =

∂ê

∂r
(122)

Thus the energy equation can be written as

ρ
Dû

Dt
+ρ ur

∂ê

∂r
=

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r (Prr ur+Prθ uθ))−

1

r

∂

∂r
(r (Prr J

r
υ)) (123)

Similar to the momentum equations, we want to simplify terms. The energy of the

system ê can be written as

ê = U +
V2

2
(124)

Where the magnitude of the mass velocity vector is defined as

V = (u2
r + u2

θ)
1/2 (125)

The internal energy U is defined as

U = Cυ T =
3

2
RT (126)

And our energy equation now becomes

ê =
3

2
RT +

V2

2
(127)

The pressure tensors can be expanded to

Prr = Ip−Trr (128)
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Prθ = Ip−Trθ (129)

And where

Trr = 2µ err = 2µ
∂ur
∂r

(130)

Trθ = 2µ erθ = rµ
∂

∂r
(
uθ
r

) (131)

Our last term to be defined is Jrυ , which was already defined in the previous section

as Equation 95

Jrυ =
C

Pr
γ

1

ρ

dρ

dr
(132)

Substituting the above derived into Equation 123, we find

ρR
∂T

∂t
+ρ ur

∂

∂r
(
3

2
RT +

V2

2
) =

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

)ur

+ (p− rµ ∂
∂r

(
uθ
r

))uθ))−
1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

) (
C

Pr

µ

ρ2

dρ

dr
)))

(133)
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9.4 Ideal Gas

Our list of unknown variables includes ur, uθ, T , ρ and p. With one more equation

required, we can relate density, temperature and pressure using the Ideal Gas Law

p = ρRT (134)

9.5 Nondimensionalization

For convenience, we will nondimensionalize our equations using the parameters

below:

ũr =
ur√
RTo

(135)

r̃ =
r

ro
(136)

ρ̃ =
ρ

ρo
(137)

ũθ =
uθ√
RTo

(138)

p̃ =
p

po
(139)

k̃ =
k

µo ĉp
(140)

T̃ =
T

To
(141)

µ̃ =
µ

µo
(142)

t̃ =
t

r2
o ρo 10−2 µ−1

o
(143)

It’s important to note that since our gas is modeled as Maxwellian and monatomic,

thermal conductivity and dynamic viscosity are proportional to temperature [13].

µ̃ = T̃ (144) k̃ =
3

2
T̃ (145)

9.5.1 Mass

Starting with the mass equation (Equation 65)

∂ρ

∂t
+ ur

∂ρ

∂r
+ ρ

∂ur
∂r

+
ρ

r
ur = 0 (146)

Substituting in our parameters from above yields

100 ρo µo
r2
o ρo

[
∂ρ̃

∂t̃

]
+
ρo
√
RTo
ro

[
ũr
∂ρ̃

∂r̃
+ ρ̃

∂ũr
∂r̃

+
ρ̃

r̃
ũr

]
= 0 (147)

Page 68



9.5 Nondimensionalization 9 APPENDIX A

We can divide through by the coefficient of the first term to yield

100
∂ρ̃

∂t̃
+
ρo ro

√
RTo

µo

[
ũr
∂ρ̃

∂r̃
+ ρ̃

∂ũr
∂r̃

+
ρ̃

r̃
ũr

]
= 0 (148)

Where the parameter ρo ro
√
RTo

µo
can be simplified to the inverse of the Knudsen

Number Kno

100
∂ρ̃

∂t̃
+

1

Kno

[
ũr
∂ρ̃

∂r̃
+ ρ̃

∂ũr
∂r̃

+
ρ̃

r̃
ũr

]
= 0 (149)
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9.5.2 Radial Momentum

Next, taking the radial momentum equation:

ρ
∂ur
∂t

+ ρ ur
∂ur
∂r
− (ρ

u2
θ

r
) = −dp

dr
+

1

r

∂

∂r
(r µ

∂ur
∂r

)− µur
r2

+
1

r

∂

∂r
(r µ

∂

∂r
(
C

Pr

µ

ρ2

∂ρ

∂r
))

(150)

Substituting in our parameters from above and simplifying yields

(
100µo

√
RTo

r2
o

)
ρ̃
∂ũr

∂t̃
+

(
ρoRTo
ro

)
ρ̃ ũr

∂ũr
∂r̃
−
(
ρoRTo
ro

)
ρ̃ ũθ

2

r̃
=

(
−po
ro

)
∂p̃

∂r̃

+

(
µo
√
RTo
r2
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−
(
µo
√
RTo
r2
o

)
µ̃ ũr
r̃2

+

(
C µ2

o

Pr ρo r3
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)]
(151)

Note that the pressure term houses a reference pressure. We can replace this with

ρoRTo from the ideal gas equation. Once that substitution has been made, the

coefficient of the pressure term matches the coefficients on the left side of the equality.

Multiplying by ro
ρoRTo

will eliminate these coefficients and yield:

(
100µo

ro ρo
√
RTo

)
ρ̃
∂ũr

∂t̃
+ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
=

− ∂p̃

∂r̃
+

(
µo√

RTo ρo ro

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−
(

µo√
RTo ρo ro

)
µ̃ ũr
r̃2

+

(
C µ2

o

PrRTo ρ2
o r

2
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)]
(152)

Remembering that the Knudson number is defined as:

Kno =
µo

ρo ro
√
RTo

(153)

We can express all three of our coefficients in terms of the Knudson number.
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100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
= −∂p̃

∂r̃
+

(
Kno

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−
(
Kno

)
µ̃ ũr
r̃2

+

(
C Kn2

o

Pr

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)]
(154)

Additionally, the Prandtl number is defined as:

Pr =
ν

α
=

µ/ρ

k/ρĉp
= ĉp

µ

k
(155)

Notice Equations 144 and 145 which defined µ̃ and k̃. Nondimnsionalizing the

Prandtl number, and applying these two equations gives

Pr = ĉp
µ̃µo

k̃µoĉp
=
µ̃

k̃
(156) Pr =

µ̃

k̃
=

µ̃
3
2 µ̃

=
2

3
(157)

replacing the Prandtl number and utilizing the Knudson number, our Radial Mo-

mentum equation becomes:

100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
= −∂p̃

∂r̃
+Kno

1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũr
∂r̃

]
−Kno

µ̃ ũr
r̃2

+

(
3C Kn2

o

2

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂

∂r̃

(
µ̃

ρ̃2

∂ρ̃

∂r̃

)] (158)

While this is now a reduced and usable form of our conservation equation, Matlab is

unable to utilize this form. The nested derivatives must be removed.

100Kno ρ̃
∂ũr

∂t̃
+ ρ̃ ũr

∂ũr
∂r̃
− ρ̃ ũθ

2

r̃
= −∂p̃

∂r̃
+Kno

[
∂µ̃

∂r̃

∂ũr
∂r̃

+ µ̃

(
∂2ũr
∂r̃2

+
1

r̃

∂ũr
∂r̃

)
−
µ̃ ũ2

θ

r̃2

]
+

(
3C Kn2

o

2

)
1

ρ̃2

[
µ̃
∂2µ̃

∂r̃2

∂ρ̃

∂r̃
+ 3 µ̃

∂µ̃

∂r̃

∂2ρ̃

∂r̃2
+

(
∂µ̃

∂r̃
− 2 µ̃

∂ρ̃

∂r̃
+ µ̃− 4 µ̃

ρ̃

∂ρ̃

∂r̃

)
∂µ̃

∂r̃

∂ρ̃

∂r̃

+
µ̃2

r̃

d2ρ̃

∂r̃2
− 6 µ̃2

ρ̃

∂ρ̃

∂r̃

d2ρ̃

∂r̃2
+

6µ̃2

ρ̃2

(∂ρ̃
∂r̃

)3 − 2 µ̃2

ρ̃

(∂ρ̃
∂r̃

)2
+ µ̃

∂3ρ̃

∂r̃3

]
(159)This form can now be used in Matlab, but notice only the first line remains when

bivelocity compressibility is ignored (C = 0)
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9.5.3 Angular Momentum

The original angular momentum is

ρ
∂uθ
∂t

+ ρ ur
∂uθ
∂r

+ (ρ
uruθ
r

) =
1

r

∂

∂r
(r µ

∂uθ
∂r

)− µuθ
r2

(160)

Nondimensionalizing angular momentum is simpler and yields

(
100µo

√
RTo

r2
o

)
ρ̃
∂ũθ

∂t̃
+

(
ρoRTo
ro

)
ρ̃ ũr

∂ũθ
∂r̃

+

(
ρoRTo
ro

)
ρ̃ ũθ ũr
r̃

=(
µo
√
RTo
r2
o

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũθ
∂r̃

]
−
(
µo
√
RTo
r2
o

)
µ̃ ũθ
r̃2

(161)

Multiplying by ro
ρoRTo

will remove most of the coefficients from the left hand side of

the equation, and allow us to make substitutions in the remaining areas.

(
100µo

ro ρo
√
RTo

)
ρ̃
∂ũθ

∂t̃
+ ρ̃ ũr

∂ũθ
∂r̃

+
ρ̃ ũθ ũr
r̃

=(
µo

ro ρo
√
RTo

)
1

r̃

∂

∂r̃

[
r̃ µ̃

∂ũθ
∂r̃

]
−
(

µo

ro ρo
√
RTo

)
µ̃ ũθ
r̃2

(162)

Again, we can quickly identify the Knudsen numbers and make the substitutions to

obtain our final equation.

100Kno ρ̃
∂ũθ

∂t̃
+ ρ̃ ũr

∂ũθ
∂r̃

+
ρ̃ ũθ ũr
r̃

=
Kno
r̃

∂

∂r̃

[
r̃ µ̃

∂ũθ
∂r̃

]
−Kno

µ̃ ũθ
r̃2

(163)

However, similar to radial momentum, angular momentum needs to be rearranged

into a form MatLab can utilize, which means removing the nested derivatives. The

expanded form becomes:

100Kno ρ̃
∂ũθ

∂t̃
+ ρ̃ ũr

∂ũθ
∂r̃

+
ρ̃ ũθ ũr
r̃

= Kno

[
∂µ̃

∂r̃

∂ũθ
∂r̃

+ µ̃
∂2ũθ
∂r̃2

+
µ̃

r̃

∂ũθ
∂r̃

]
−Kno

µ̃ ũθ
r̃2

(164)
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9.5.4 Energy

Next, we start with our energy equation

ρR
∂T

∂t
+ρ ur

∂

∂r
(
3

2
RT +

V2

2
) =

1

r

∂

∂r
(k′ r

∂T

∂r
)− 1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

)ur

+ (p− rµ ∂
∂r

(
uθ
r

))uθ))−
1

r

∂

∂r
(r ((p− 2µ

∂ur
∂r

) (
C

Pr

µ

ρ2

∂ρ

∂r
)))

(165)

First, expanding the equation will help with nondimensionalizing

ρR
∂T

∂t
+ρ ur[

3R

2

∂T

∂r
+

1

2

∂u2
r

∂r
+

1

2

∂u2
θ

∂r
] =

1

r

∂

∂r
(k′ r

∂T

∂r
)

− 1

r

∂

∂r
[rurp+ ruθp− 2rurµ

∂ur
∂r
− r2uθµ

∂

∂r
(
uθ
r

)]

− C

r Pr
[
∂

∂r
(
r µ p

ρ2

∂ρ

∂r
)− 2

∂

∂r
(
rµ2

ρ2

∂ρ

∂r

∂ur
∂r

)]

(166)

Expanding the 2nd and 3rd lines such that we have 2 terms on the left and 5 terms

on the right will also be beneficial.

ρR
∂T

∂t
+ρ ur[

3R

2

∂T

∂r
+

1

2

∂u2
r

∂r
+

1

2

∂u2
θ

∂r
] =

1

r

∂

∂r
(k′ r

∂T

∂r
)

− 1

r

∂

∂r
[rp(ur + uθ)] +

1

r

∂

∂r
[2rurµ

∂ur
∂r

+ r2uθµ
∂

∂r
(
uθ
r

)]

− C

r Pr

∂

∂r
[
r µ p

ρ2

∂ρ

∂r
] +

2C

r Pr

∂

∂r
[
rµ2

ρ2

∂ρ

∂r

∂ur
∂r

]

(167)

All of our terms will be straightforward to nondimensionalize, with the exception of

k′. Using Equation 105 we can replace k′

ρR
∂T

∂t
+ρ ur[

3R

2

∂T

∂r
+

1

2

∂u2
r

∂r
+

1

2

∂u2
θ

∂r
] =

1

r

∂

∂r
(
3

5
k r

∂T

∂r
)

− 1

r

∂

∂r
[rp(ur + uθ)] +

1

r

∂

∂r
[2rurµ

∂ur
∂r

+ r2uθµ
∂

∂r
(
uθ
r

)]

− C

r Pr

∂

∂r
[
r µ p

ρ2

∂ρ

∂r
] +

2C

r Pr

∂

∂r
[
rµ2

ρ2

∂ρ

∂r

∂ur
∂r

]

(168)

Nondimensionalizing, our equation becomes
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100µoRTo
r2
o

(
ρ̃
∂T̃

∂t̃

)
+

1

2

ρ̃ ρo ũr
ro

(RTo)
3/2 [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] =

1

r̃ r2
o

d

dr̃
(
3

5
k̃ µo ĉp r̃ ro

To
ro

dT̃

dr̃
)− 1

r̃ r2
o

d

dr̃
[r̃ rop̃ po

√
RTo (ũr + ũθ)]

+
1

r̃ r2
o

d

dr̃
[2r̃ ro µ̃ µoũr

RTo
ro

dũr
dr̃

+ r̃2 r2
o µ̃ µo ũθ

RTo
r2
o

d

dr̃
(
ũθ
r̃

)]

− C

r̃ r2
o Pr

d

dr̃
[
r̃ ro µ̃ µo p̃ po

ρ̃2 ρ2
o

ρo
ro

dρ̃

dr̃
] +

2C

r̃ r2
o Pr

d

dr̃
[
r̃ ro µ̃

2µ2
o

ρ̃2 ρ2
o

ρo
√
RTo
r2
o

dρ̃

dr̃

dũr
dr̃

]

(169)

With some preliminary simplification, we find

100µoRTo
r2
o

(
ρ̃
∂T̃

∂t̃

)
+ (

1

2

ρo
ro

(RTo)
3/2) (ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] =

(
3µo ĉp To

5 r2
o

)
1

r̃

d

dr̃
[k̃ r̃

dT̃

dr̃
]− (

po
√
RTo
ro

)
1

r̃

d

dr̃
[r̃p̃ (ũr + (ũθ)]

+ (
µoRTo
r2
o

)
1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
Cµo po
r2
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C µ2
o

√
RTo

r3
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(170)

We can immediately remove k̃ and replace it with 3
2 T̃ . Our next simplification comes

from dividing both sides by po

100µoRTo
r2
o po

(
ρ̃
∂T̃

∂t̃

)
+ (

1

2

ρo
po ro

(RTo)
3/2) (ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] =

(
9µo ĉp To
10 po r2

o

)
1

r̃

d

dr̃
[T̃ r̃

dT̃

dr̃
]− (

√
RTo
ro

)
1

r̃

d

dr̃
[r̃p̃ (ũr + (ũθ)]

+ (
µoRTo
po r2

o

)
1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
Cµo

r2
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C µ2
o

√
RTo

po r3
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(171)

We can see on the left hand side, that the density and an RTo can be replaced by

pressure using the ideal gas law.
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100µo
r2
o ρo

(
ρ̃
∂T̃

∂t̃

)
+ (

1

2

√
RTo
ro

) (ρ̃ ũr) [3
dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] =

(
9µo ĉp To
10 po r2

o

)
1

r̃

d

dr̃
[r̃ T̃

dT̃

dr̃
]− (

√
RTo
ro

)
1

r̃

d

dr̃
[r̃p̃ (ũr + (ũθ)]

+ (
µoRTo
po r2

o

)
1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
Cµo

r2
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C µ2
o

√
RTo

po r3
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(172)

Divide both sides by
√
RTo

100µo

r2
o ρo
√
RTo

(
ρ̃
∂T̃

∂t̃

)
+ (

1

2

1

ro
) (ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] =

(
9µo ĉp To

10 po r2
o

√
RTo

)
1

r̃

d

dr̃
[r̃ T̃

dT̃

dr̃
]− (

1

ro
)

1

r̃

d

dr̃
[r̃p̃ (ũr + (ũθ)]

+ (
µo
√
RTo

po r2
o

)
1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
Cµo

r2
o ρo Pr

√
RTo

)
1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C µ2
o

po r3
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(173)

Knudson number in the 1st and 6th terms, and multiply both sides by ro

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] = (

9µo ĉp To

10 po ro
√
RTo

)
1

r̃

d

dr̃
[r̃ T̃

dT̃

dr̃
]

− 1

r̃

d

dr̃
[r̃p̃ (ũr + (ũθ)] + (

µo
√
RTo

po ro
)

1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
C

Pr
Kno)

1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C µ2
o

po r2
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(174)

Next, the remaining pressure terms can be replaced with ρoRTo thanks to the ideal

gas law
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100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] = (

9µo ĉp To

10 ρoRTo ro
√
RTo

)
1

r̃

d

dr̃
[r̃ T̃

dT̃

dr̃
]

− 1

r̃

d

dr̃
[r̃p̃ (ũr + ũθ)] + (

µo
√
RTo

ρoRTo ro
)

1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
C

Pr
Kno)

1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C µ2
o

ρoRTo r2
o ρo Pr

)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(175)

There are Knudson numbers in the 3rd and 5th terms and two in the 7th term

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] = (

9 ĉp To
10RTo

Kno)
1

r̃

d

dr̃
[r̃ T̃

dT̃

dr̃
]

− 1

r̃

d

dr̃
[r̃p̃ (ũr + ũθ)] + (Kno)

1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
C

Pr
Kno)

1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C

Pr
Kn2

o)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(176)

Notice that the rest of the third term (other than the Knudson number) reduces,

since ĉp is a function of R

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr) [3

dT̃

dr̃
+
dũ2

r

dr̃
+
dũ2

θ

dr̃
] = (

45

20
Kno)

1

r̃

d

dr̃
[r̃ T̃

dT̃

dr̃
]

− 1

r̃

d

dr̃
[r̃p̃ (ũr + ũθ)] + (Kno)

1

r̃

d

dr̃
[2 r̃ µ̃ ũr

dũr
dr̃

+ r̃2 µ̃ ũθ
d

dr̃
(
ũθ
r̃

)]

− (
C

Pr
Kno)

1

r̃

d

dr̃
[
r̃ µ̃ p̃

ρ̃2

dρ̃

dr̃
] + (

2C

Pr
Kn2

o)
1

r̃

d

dr̃
[
r̃ µ̃2

ρ̃2

dρ̃

dr̃

dũr
dr̃

]

(177)

As demonstrated in the momentum section, the Prandtl number can be replaced

with 2
3 , giving a final energy equation as:

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr) [3

∂T̃

∂r̃
+
∂ũ2

r

∂r̃
+
∂ũ2

θ

∂r̃
] = (

45

20
Kno)

1

r̃

∂

∂r̃
[r̃ T̃

∂T̃

∂r̃
]

− 1

r̃

∂

∂r̃
[r̃p̃ (ũr + ũθ)] + (Kno)

1

r̃

∂

∂r̃
[2 r̃ µ̃ ũr

∂ũr
∂r̃

+ r̃2 µ̃ ũθ
∂

∂r̃
(
ũθ
r̃

)]

− (
3C

2
Kno)

1

r̃

∂

∂r̃
[
r̃ µ̃ p̃

ρ̃2

∂ρ̃

∂r̃
] + (3C Kn2

o)
1

r̃

∂

∂r̃
[
r̃ µ̃2

ρ̃2

∂ρ̃

∂r̃

∂ũr
∂r̃

]

(178)
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Lastly, the nested derivatives must again be removed in order to implement this

equation into MatLab. This expansion greatly increases the equation’s size, but is

necessary. Conservation of energy becomes:

100Kno ρ̃
∂T̃

∂t̃
+

1

2
(ρ̃ ũr)

[
3
∂T̃

∂r̃
+
∂ũ2

r

∂r̃
+
∂ũ2

θ

∂r̃

]
=(

45Kno
20 r̃

)[
r̃ T̃

∂2T̃

∂r̃2
+ r̃

(
∂T̃

∂r̃

)2

+ T̃
∂T̃

d∂r̃

]
− 1

r̃

[
r̃
∂ρ̃

∂r̃
(ũr + ũθ) + ρ̃(r̃

∂ũr
∂r̃

+ ũr + r̃
∂ũθ
∂r̃

+ ũθ)

]
+
Kno
r̃

[
2 r̃ ũr

∂µ̃

∂r̃

∂ũr
∂r̃

+ ũθ

(
r̃
∂µ̃

∂r̃

∂ũθ
∂r̃

+ µ̃
(
r̃
∂2ũθ
∂r̃2

− ∂ũθ
∂r̃

))
− ũ2

θ

∂µ̃

∂r̃
+ µ̃

(
r̃
(
2
(∂ũr
∂r̃

)2
+
(dũθ
∂r̃

)2)
+ 2 ũr

(
r̃
∂2ũr
∂r̃2

+
∂ũr
∂r̃

))]
− 3C Kno

2 r̃ ρ̃3

[
ρ̃

(
r̃p̃
∂µ̃

∂r̃

∂p̃

∂r̃
+ µ̃

(
r̃
(∂p̃
∂r̃

)2
+ p̃
(
r̃
∂2p̃

∂r̃2
+
∂p̃

∂r̃

)))
− 2 r̃ µ̃ p̃

∂ρ̃

∂r̃

∂p̃

∂r̃

]
+

(
3C Kn2

o µ̃

r̃ ρ̃3

)[
ρ̃

(
2 r̃

∂ρ̃

∂r̃

∂µ̃

∂r̃

∂ũr
∂r̃

+ µ̃

(
r̃
∂2ρ̃

∂r̃2

∂ũr
∂r̃

+
∂ρ̃

∂r̃

(
r̃
∂2ũr
∂r̃2

+
∂ũr
∂r̃

)))
− 2 r̃ µ̃

∂ũr
∂r̃

(∂ρ̃
∂r̃

)2]
(179)
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9.5.5 Ideal Gas

Lastly, the ideal gas equation

p = ρRT (180)

It is also known that it can be written in terms of reference parameters only.

po = ρoRTo (181)

Dividing the two, yields

p

po
=

ρ

ρo

T

To
(182)

Where each parameter can be replaced by its nondimensional form

p̃ = ρ̃ T̃ (183)
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